
Rotation representation

Bang-Shien Chen∗

Rotations are fundamental for representing the orientation of a pose in robotics. To be
more specific, a pose (or coordinate system) T ∈ SE(3) consists of a rotation matrix R ∈ SO(3)
and a translation vector t ∈ R3, while R defines the axis of a coordinate system and t specifies
the origin of the coordinate system. In other words, each object/robot/camera has its own
coordinate system. In this note, we will introduce different rotation representations (since
translation is rather simple), and discuss about how to manipulate them. For simplicity, we
assume that all coordinate systems have the same origin.

1 Matrix Representation

Figure 1.1: Poses or coordinate systems.

We begin with the most intuitive representation of rotations: rotation matrices. Each
column of a rotation matrix represents the orthogonal unit-length axis that satisfy the right-
hand rule. For example, the rotation matrix in Figure 1.1 is

R =

 | | |
Rx Ry Rz

| | |

 .

Note that in Figure 1.1, the (right) pose has a reference (left) coordinate system, where
we typically call it the world coordinate system. To distinguish between different coordinate
systems, we denote the reference coordinate system as w, the current robot pose as r, and add
a superscript for reference coordinate system and subscript for current coordinate system, i.e.,
Rw

r . Since the columns have unit length, are orthogonal to each other, and satisfy the right-hand
rule, we have

Rw
r ∈ SO(3) = {R ∈ R3×3 | R⊤R = I3, det(R) = +1}. (1.1)

1.1 Rotation matrix operations

Suppose that a robot observes a point pr, which is represented by the robot’s coordinate
system (the robot does not have knowledge about the world coordinate system). To convert
this point to the world coordinate system, we apply the rotation matrix:

pw = Rw
r p

r. (1.2)

∗https://dgbshien.com/

1

https://dgbshien.com/

This is where the superscripts and subscripts come in handy. We will discuss about trans-
ferring a point’s reference coordinate system with a more concrete example in Section 5.3. Now
consider the case that we have two coordinate systems, Rw

r and Rr
c , we can compute a pose c

with reference w as follows:
Rw

c = Rw
r R

r
c . (1.3)

Again, we will discuss about transferring coordinate systems with a more concrete example in
Section 5.2. Now given a rotation Rw

r , since Rw
r R

r
w = Rw

w = I3, we have the inverse

Rr
w = (Rw

r)
−1 = (Rw

r)
⊤. (1.4)

This also suggests that the rows of Rw
r is the axis of coordinate system w with reference

coordinate system r. Therefore, we could also extend the special orthogonal group in Equa-
tion (1.1) as SO(3) = {R ∈ R3×3 | R⊤R = RR⊤ = I3, det(r) = 1}. Also, the special orthogonal
group is not commutative since Rw

r R
r
c ̸= Rr

cR
w
r in general.

2 Euler angle representation

Figure 2.1: Raw, pitch, and yaw.

While rotation matrices are excellent to perform calculations due to its group structure, it
clearly stores redundant information since a 3D rotation has only 3 degree of freedom (DoF). Eu-
ler’s rotation theorem states that any 3D rotation can be described using just three parameters.
However, Euler angles are not uniquely defined, as different Euler decomposition conventions
exist [3]. A common choice is the raw-pitch-yaw angle representation given (α, β, γ), which
represents the rotated angle around x-axis,y-axis, and z-axis, respectively:

Rw
r =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

︸ ︷︷ ︸

Rz(γ)

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

︸ ︷︷ ︸

Ry(β)

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

︸ ︷︷ ︸

Rx(α)

(2.1)

=

cos(β) cos(γ) sin(α) sin(β) cos(α)− cos(α) sin(γ) cos(α) sin(β) cos(γ) + sin(α) sin(γ)
cos(β) sin(γ) sin(α) sin(β) sin(γ) + cos(α) cos(γ) cos(α) sin(β) sin(γ)− sin(α) cos(γ)
− sin(β) sin(α) cos(β) cos(α) cos(β)

 .

Euler angles provide a minimal representation and intuitive way to describe rotations. How-
ever, the operations of angle representations typically involve trigonometric functions, which
may be slower to compute. In addition, Euler angles suffers from singularity/gimbal lock, where
one DoF is lost in certain angles. That is, certain rotations do not have a unique Euler angle
representation. This also leads to different methods of computing Euler angles from rotation
matrices [3, 6]. For practical implementation (as well as conversion between all other rota-
tion representations), I would recommend using SciPy’s Rotation class if you are working with
Python, Eigen’s EulerAngles class if you are working with C++, or rotm2eul (built-in function)
if you are working with Matlab.

2

3 Axis-angle representation

Another common representation for rotations is the axis-angle representation (u, θ), param-
eterized by a unit vector u and a rotation angle θ that rotates (right-hand rule) around axis u.
Let θ = θu ∈ R3, we could also store axis-angle representations in 3 parameters. In addition,
axis-angle representations are isomorphic to so(3), the Lie algebra of SO(3), which is convenient
to use while dealing with Lie derivatives. We will discuss about Lie theory in a separate note.

Figure 3.1: Axis-angle representation.

There are also some drawbacks of axis-angle representations. Computations can be slow
because operations typically involve trigonometric functions; the inverse, however, is easy to
compute by (u, θ)−1 = (−u, θ) = (u,−θ). Also, axis-angle representations are not unique, e.g.,
(u, θ) = (u, θ + 2kπ) for any k and (u, θ) = (−u,−θ), which introduces discontinuities [9].

3.1 Axis-angle to rotation matrix

Given an axis-angle representation (u, θ), the corresponding rotation matrix can be com-
puted using Rodrigues’ rotation formula:

R = I3 + sin θ[u]× + (1− cos θ)[u]2×, (3.1)

where

[u]× =

 0 −uz uy
uz 0 −ux
−uy ux 0

 (3.2)

is a skew-symmetric matrix. We will discuss about Equation (3.1) in more details, in a separate
note about Lie theory1.

3.2 Rotation matrix to axis-angle

Now given a rotation matrix R, we compute θ by the trace of R. Since all R ∼ Rx(θ) and
similar matrices have the same trace, by Equation (2.1), we have tr(R) = 1 + 2 cos θ. Thereby,
we compute the rotation angle by

θ = arccos

(
tr(R)− 1

2

)
. (3.3)

To obtain u, we first recall that since the rotation rotates around u, we have Ru = u. That
is, u is the eigenvector corresponding to the eigenvalue 1. Note that the eigenvalues of a 3D
rotation matrix are always {1, cos θ ± sin θ}, we can derive a closed-form for computing the
eigenvector u. Since R − R⊤ is skew-symmetric, we chose ū = R − R⊤. Nevertheless, ū may
not be a unit vector and by [u]⊤× = −[u]×, we have

∥ū∥ = ∥(I3 − sin θ[u]× + (1− cos θ)[u]2×)− (I3 + sin θ[u]× + (1− cos θ)[u]2×)∥ = 2 sin θ.

Thereby, we compute the rotation axis by

u =
(R−R⊤)∧

2 sin θ
, (3.4)

where (·)∧ is the inverse of Equation (3.2).

1https://dgbshien.com/docs/blogs/lie-theory.pdf

3

https://dgbshien.com/docs/blogs/lie-theory.pdf

4 Quaternion representation

3-parameter representations are ideal for storage but have singularities (in fact, there is no 3-
parameter representations without singularity [8]), while matrix representations are singularity-
free but over-parametrized. We next introduce quaternions, a representation that is singularity-
free and uses less parameters than rotation matrices.

Quaternions are extended complex numbers found by William R. Hamilton. It is the most
unintuitive representation among all, however, 3Blue1Brown has some nice visualization videos2.
A 2D rotation can be represented by a unit-length complex number, using the Euler equation:

eiθ = cos θ + i sin θ.

Similarly, we will later see that a 3D rotation can be represented by a unit quaternion. A
quaternion has a real part (scalar) and three imaginary parts (vector). We write the scalar part
at last3 as follows:

q =

(
v
s

)
=

q1
q2
q3
q4

 = q4︸︷︷︸
real part

+ q1i+ q2j + q3k︸ ︷︷ ︸
imaginary part

, (4.1)

where s denotes the scalar part, v denotes the vector part, and i, j, k are the three imaginary
parts that satisfy

i2 = j2 = k2 = −1,

ij = k, ji = −k,

jk = i, kj = −i,

ki = j, ik = −j.

Quaternions are a broad mathematical topic with nice structures and properties, however,
we focus solely on unit quaternions and its relation with 3D rotations. The basic insight behind
the quaternion is to rearrange the axis-angle representation (u, θ) as follows:

q =

(
sin(θ/2)u
cos(θ/2)

)
.

This stores the essential information required to represent 3D rotations, and by Equation (3.1),
we can recover a rotation matrix as follows:

R =

q21 − q22 − q23 + q24 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) −q21 + q22 − q23 + q24 2(q2q3 − q1q4)
2(q1q3 − q2q4) 2(q2q3 + q1q4) −q21 − q22 + q23 + q24

 . (4.2)

Quaternion eliminates singularity in Euler angle representation and resolves discontinuity
in axis-angle representation. The only ambiguity is that q and −q represent the same rotation,
however, the mapping is still smooth and does not introduce sudden jumps or gimbal lock. This
is also why most neural networks opt to learn quaternions over other rotation representations.

4.1 Quaternion operations

Recall that in Section 1.1, we have pw = Rw
r p

r for rotation matrices. Quaternions also has
a simple operation for 3D vectors:(

pw

1

)
= qwr ⊗

(
pr

1

)
⊗ (qwr)

−1, (4.3)

where stacking an additional dimension with 1 is also known as the homogeneous coordinates.
2https://youtu.be/zjMuIxRvygQ
3The scalar part is more often written in the front, however, we adopt the unusual convention to keep some

similarity with the homogeneous coordinates.

4

https://youtu.be/zjMuIxRvygQ

Again, we have Rw
c = Rw

r R
r
c for rotation matrices. For quaternions, we define quaternion

product and compose rotations with

qwc = qwr ⊗ qrc := Ω1(q
w
r)q

r
c = Ω2(q

r
c)q

w
r , (4.4)

where

Ω1(q) =

q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

 and Ω2(q) =

q4 q3 −q2 q1
−q3 q4 q1 q2
q2 −q1 q4 q3
−q1 −q2 −q3 q4

 .

Since quaternions can be derived from axis-angle representations, the inverse is also straight-
forward:

qrw =

(
−vwr
swr

)
= (qwr)

−1, (4.5)

where swr and vwr is the scalar and vector part of qwr , respectively.

4.2 Is quaternion the best representation?

At first glance, quaternions appear to be the best choice for representing rotations—they
provide a minimal parameterization without singularities and are computationally more efficient
than rotation matrices. However, they come with one notable drawback when working with
distance of quaternions. Given a distance function d, we typically minimize an optimization
problem like minq d(q, q̃). Since both q̃ and −q̃ represent the same rotation, we would ideally
want d(q, q̃) = d(q,−q̃). Unfortunately, d(q, q̃) ̸= d(q,−q̃) in general, which can pose issues to
the optimization problem. Hence, while being an effective representation, we will mostly prefer
to use rotation matrix representation.

5 Rigid-body transformation

Figure 5.1: Poses or transformations.

In Section 1, we have shown that a pose or coordinate system can be represented by a rotation
and a translation, while assuming the translation is 0. Now we introduce the translation vector
twr back, with similar superscript w denoting the reference coordinate system and subscript r
denoting the current robot pose. It is convenient to assemble the rotation matrix and translation
vector to a transformation matrix

Tw
r =

(
Rw

r twr
0⊤ 1

)
∈ SE(3). (5.1)

We next discuss about the operations of transformation matrices.

5

5.1 Transformation matrix operations

Similar to Section 1.1, we can transfer pr to pw by pw = Rw
r p

r + twr or

p̃w = Tw
r p̃r, (5.2)

where p̃ = (p⊤, 1)⊤ is the homogeneous coordinates. For composition, we have

Tw
c = Tw

r T r
c . (5.3)

Furthermore, we have the inverse of Tw
r as follows:

T r
w = (Tw

r)−1 =

(
(Rw

r)
⊤ −(Rw

r)
⊤twr

0⊤ 1

)
. (5.4)

Proof. We verify the property of an inverse

Tw
r T r

w =

(
Rw

r twr
0⊤ 1

)(
(Rw

r)
⊤ −(Rw

r)
⊤twr

0⊤ 1

)
=

(
Rw

r R
r
w twr −Rw

r R
r
wt

w
r

0⊤ 1

)
= I4,

T r
wT

w
r =

(
(Rw

r)
⊤ −(Rw

r)
⊤twr

0⊤ 1

)(
Rw

r twr
0⊤ 1

)
=

(
Rr

wR
w
r Rr

wt
w
r −Rr

wt
w
r

0⊤ 1

)
= I4.

5.2 Pose graph optimization

Here we give an example of utilizing transformation matrix composition. Suppose that a
robot has a trajectory {Ti}, we call the transformation matrix that represents each robot pose
Ti as absolute pose. On the other hand, the change of coordinate system between two robot
poses Ti and Tj is also represented by a transformation matrix Tij , which is called relative pose.
By Equation (5.3), we have

Tj = TiTij . (5.5)

Pose graph optimization tries to find better absolute poses (variables) given the relative
poses (constraints). A natural optimization problem arises:

min
{Ti}

∑
(i,j)∈E

σij∥Tj − TiTij∥2F ,

where E denotes the edge of the pose graph and σij is the standard deviation of the Tij mea-
surement (in maximum likelihood sense). However, we often apply different weights to rotation
and translation. Expanding Equation (5.5), we have(

Rj tj
0⊤ 1

)
=

(
Ri ti
0⊤ 1

)(
Rij tij
0⊤ 1

)
=

(
RiRij Ritij + ti
0⊤ 1

)
.

Thereby, we decouple the problem to a more commonly seen pose graph optimization [5]
problem:

min
{Ri},{ti}

∑
(i,j)∈E

κij∥Rj −RiRij∥2F + τij∥tj − (Ritij + ti)∥22.

Note that using the Frobenius norm to compute the distance between two rotation matrices
is also known as the chordal distance. One can also use other distance metrics [2] such as
geodesic distance, which is equivalent to extracting the angle of the axis-angle representation
of the relative transformation between two rotation matrices. The corresponding optimization
problem would then be

min
{Ri},{ti}

∑
(i,j)∈E

κij∥Log(R⊤
j RiRij)∥22 + τij∥tj − (Ritij + ti)∥22,

where Log(·) is the capitalized logarithm map that maps R ∈ SO(3) to θu. Please refer to Lie
theory [7] for more details.

6

5.3 Camera coordinate system

In this section, we give an example of transferring a point’s reference coordinate system
with transformation matrix or pose. Given a point pw in real-world coordinate, we transfer it
to pixel image coordinate of a camera by

pi = K︸︷︷︸
intrinsic

E︸︷︷︸
extrinsic

pw. (5.6)

For instance, in visual odometry [4], the goal is to estimate the extrinsic matrix of each
camera pose. We can breakdown Equation (5.6) to two steps: first transfer pw to pc = Epw

in the camera’s coordinate system, then transfer pc to pixel coordinate pi = Kpc of an image.
Since intrinsic matrices are typically known information, the challenge lies in solving E, or
with superscript and subscript, Ec

w. Note that absolute poses (the way we normally describe a
robot’s pose) are in the format of Tw

c , that is, poses and extrinsic matrices are inverses of each
other. This distinction is crucial when working with different coordinate systems in robotics
and computer vision.

References

[1] L. Carlone. 16.485: Visual navigation for autonomous vehicles (lecture notes), 2023.

[2] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert. Initialization techniques for 3d slam:
A survey on rotation estimation and its use in pose graph optimization. In 2015 IEEE
International Conference on Robotics and Automation, pages 4597–4604, 2015.

[3] D. Eberly. Euler angle formulas. Geometric Tools, LLC, Technical Report, pages 1–18, 2008.

[4] X. Gao, T. Zhang, Y. Liu, and Q. Yan. 14 lectures on visual slam: from theory to practice.
Publishing House of Electronics Industry, pages 206–234, 2017.

[5] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard. Se-sync: A certifiably correct
algorithm for synchronization over the special euclidean group. The International Journal
of Robotics Research, 38(2-3):95–125, 2019.

[6] G. G. Slabaugh. Computing euler angles from a rotation matrix. Retrieved on August,
6(2000):39–63, 1999.

[7] J. Sola, J. Deray, and D. Atchuthan. A micro lie theory for state estimation in robotics.
arXiv:1812.01537, 2018.

[8] J. Stuelpnagel. On the parametrization of the three-dimensional rotation group. SIAM
review, 6(4):422–430, 1964.

[9] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of rotation representations
in neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5745–5753, 2019.

7

	Matrix Representation
	Rotation matrix operations

	Euler angle representation
	Axis-angle representation
	Axis-angle to rotation matrix
	Rotation matrix to axis-angle

	Quaternion representation
	Quaternion operations
	Is quaternion the best representation?

	Rigid-body transformation
	Transformation matrix operations
	Pose graph optimization
	Camera coordinate system

