
Lie theory in Robotics

Bang-Shien Chen∗

In robotics, we often encounter groups such as SO(3) and SE(3). These groups are also
smooth manifolds, making them Lie groups. If we want to optimize (e.g., gradient methods)
along these groups, standard derivatives do not directly apply due to the curved nature of these
spaces. However, we could define Lie derivatives with the help of Lie theory, allowing us to
manipulate calculus. A Lie theory cheat sheet can be found here.

1 Lie theory

Before we start, we first show an excellent visualization by Sola et al. [6]. The groups we
are dealing with can be intuitively represented as the (blue) sphere in the Figure 1.1, and its
corresponding Lie algebra is the (red) tangent plane at the identity E , which is a vector space
under some operator.

Figure 1.1: Representation of the relation between Lie group and Lie algebra [6].

1.1 Lie groups

A Lie group G is a smooth manifold whose elements satisfy the group axioms. A smooth
manifold is a topological space that locally resembles a linear space, i.e., there exists a unique
tangent plane at each point. A group is a set G with binary operator ◦ that satisfies group
axioms, i.e., for all X ,Y,Z ∈ G,

1. (closure) X ◦ Y ∈ G,

2. (associative) (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z),

3. (identity) there exists unique E ∈ G such that E ◦ X = X ◦ E = X ,

4. (inverse) there exists unique X−1 ∈ G such that X−1 ◦ X = X ◦ X−1 = E .

Note that by the closure property, group composition also lies on the manifold.

∗https://dgbshien.com/

1

https://github.com/artivis/manif/blob/devel/paper/Lie_theory_cheat_sheet.pdf
https://dgbshien.com/

Now given a Lie groupM and a set V , we define X · v the action of X ∈M on v ∈ V ,

(·) :M× V → V ; (X , v) 7→ X · v.

For the operator · to be a group action, it must satisfy the following axioms:

1. (identity) E · v = v,

2. (compatibility) (X ◦ Y) · v = X · (Y · v).

Notably, group composition is a group action itself. Here are some examples of group actions:

• Given a rotation matrix R ∈ SO(3) and a 3D point p ∈ R3,

R · p = Rp ∈ R3.

• Given a transformation matrix T ∈ SE(3) and a 3D point p ∈ R3,

T · p = Rp+ t ∈ R3.

2 Lie algebra

Given X an element of a Lie group M, the tangent space at X is denoted by TXM. In
particular, the tangent space at identity TEM is called the Lie algebra1 of M, denoted by m.
Every Lie groupM has an associated Lie algebra m with the following properties:

• Lie algebra m is a vector space.

• The exponential map exp(·) maps elements of the Lie algebra to the Lie group.

• The logarithm map log(·) is the inverse of the exponential map, which maps elements of
the Lie group to the Lie algebra.

• Any tangent space TXM can be transformed to m = TEM via a linear transformation
called the adjoint map.

We will discuss these properties in more detail in the following sections. Since Lie algebra
is isomorphic to a Cartesian vector space, we denote τ∧ for elements in tangent spaces where
τ ∈ Rm and m is the degree of freedom (DoF) of the Lie group. A left superscript may also be
added to specify the tangent space, e.g., Xτ∧ ∈ TXM and Eτ∧ ∈ m.

2.1 Cartesian vector space

Despite that Lie algebra is a vector space, it is often more convenient to work on an isomor-
phic Cartesian vector space, i.e., m ∼= Rm where m is the DoF. Instead of directly manipulating
elements in Lie algebra, we typically perform calculus on the Cartesian vector space. Therefore,
we first define the maps between m and Rm: the hat operator (·)∧ and the vee operator (·)∨:

(·)∧ : Rm → m ; τ 7→ τ∧ =

m∑
i=1

τiEi, (2.1)

(·)∨ : m→ Rm ; τ∧ 7→ τ =
m∑
i=1

τiei, (2.2)

where ei are the basis of Rm and Ei = e∧i are the basis of m. These mappings establish the
isomorphism m ∼= Rm, and τ ∈ Rm is obviously more convenient in terms of manipulating linear
algebra. We say τ is the Cartesian vector in the Cartesian space to differentiate it with the Lie
algebra τ∧.

1Some literature loosely refers to TXM as Lie algebra for any X , but this is informal. Only TEM is closed
under Lie bracket, the operation that defines the Lie algebra.

2

Example 2.1: The rotation group SO(3) and its Lie algebra so(3)

The rotation group is a set of 3×3 matrices that satisfies the orthogonal constraint R⊤R =
I3. Since the tangent plane consists of all possible derivatives Ṙ along a smooth trajectory
passing through R, we differentiate the orthogonal constraint:

R⊤Ṙ+ Ṙ⊤R = 0.

Since the derivative of matrix transpose is the transpose of derivative ([5, Equation
(44)]), we have R⊤Ṙ = −(R⊤Ṙ)⊤ is a skew-symmetric matrix. Skew-symmetric matrices
are denoted as [τ]× with

[τ]× =

 0 −τz τy
τz 0 −τx
−τy τx 0

 . (2.3)

Since Lie algebra is the tangent space of the identity, take R = I3, we have Ṙ is a
skew-symmetric matrix. By Equation (2.1) and Equation (2.2), we obtain the relation
between the Lie algebra of rotation group se(3) and its isomorphic vector space R3:

[·]× : R3 → so(3) ; τ 7→ [τ]×, (2.4)

(·)∨ : so(3)→ R3 ; [τ]× 7→ τ . (2.5)

We provided an example of Lie algebra and its corresponding vector space in Example 2.1.
Here is a more intuitive interpretation. Recall that rotations can be viewed as a transforma-
tion between coordinate systems. Figure 2.1 shows an example of applying a rotation onto a
coordinate system, and the derivative (or velocity) of each axis.

Figure 2.1: Derivative (or velocity) of a rotation.

Now if we take the black arrow in Figure 2.1 as the axis-angle representation θ = θu, where
u is the unit axis and θ is the angle. We have the following relations:

ẋ = θ × x,

ẏ = θ × y,

ż = θ × z.

Let R = I3 be the coordinate system, we can rearrange these equations into matrix form:

Ṙ =

 | | |
θ × x θ × y θ × z
| | |

 = θ × I3 = [θ]×I3 = [θ]×.

That is, the elements of rotation’s Lie algebra so(3) are skew-symmetric matrices, and
more importantly, their corresponding Cartesian vectors are the axis-angle representations, also
known as the rotation vectors or the angular velocities in robotics and kinematics.

3

2.2 Exponential map

The exponential map exp(·) exactly transfers elements on Lie algebra to the Lie group.
Intuitively (see Figure 1.1), exp(·) wraps an element (lines τ∧ on the tangent plane) around
the manifold following the geodesic of the sphere (geodesics exp(τ∧) around the sphere). For
simplicity, the figure uses τ informally since it is already a vector. We define the exponential
map as follows:

exp(·) : m→M ; τ∧ 7→ X . (2.6)

Since we are primarily working with the Cartesian vectors, it is natural to extend Equa-
tion (2.6) to the Cartesian vector space:

Exp(·) : Rm →M ; τ 7→ X . (2.7)

Example 2.2: Exponential map of rotation group

Let τ = θu = θ be the axis-angle representation, we compute the matrix exponential by
power series:

exp([θ]×) =
∞∑
k=1

θk

k!
[u]k×

= [u]0× + θ[u]× +
θ2

2!
[u]2× +

θ3

3!
[u]3× +

θ4

4!
[u]4× +

θ5

5!
[u]5× +

θ6

6!
[u]6× + . . .

= I3 + θ[u]× +
θ2

2!
[u]2× −

θ3

3!
[u]× −

θ4

4!
[u]2× +

θ5

5!
[u]× +

θ6

6!
[u]2× + . . .

= I3 + [u]×(θ −
θ3

3!
+

θ5

5!
− . . .) + [u]2×(

θ2

2!
− θ4

4!
+

θ6

6!
− . . .)

= I3 + [u]× sin θ + [u]2×(1− cos θ). (2.8)

Equation (2.8) is also known as the Rodrigues’ rotation formula.

2.3 Logarithm map

The logarithm map is the inverse of the exponential map:

log(·) :M→ m ; X 7→ τ∧. (2.9)

Again, we extend Equation (2.9) to the Cartesian vector space:

Log(·) :M→ Rm ; X 7→ τ . (2.10)

Example 2.3: Logarithm map of rotation group

Since the trace of any rotation matrix is 1 + 2 cos θ, we compute the angle by

θ = arccos

(
tr(R)− 1

2

)
. (2.11)

Then the axis can be computed by

u =
(R−R⊤)∧

2 sin θ
. (2.12)

We have a more detailed explanation about Equation (2.11) and Equation (2.12) in a sepa-
rate note about rotation representations2.

2https://dgbshien.com/docs/blogs/rotation-representation.pdf

4

https://dgbshien.com/docs/blogs/rotation-representation.pdf

Figure 2.2: Mappings between Lie group and Lie algebra [6].

The capital logarithm map is commonly used to define a well-known distance metric, the
geodesic distance or angular distance. To measure the distance between two rotation matrices,
we first compute the relative rotation, then compute the norm of the Lie algebra or axis-angle
representation θ = θu of the relative rotation matrix. Since u is a unit vector, the norm
simplifies to ∥θ∥ = θ. Thus, Equation (2.11) is also used to compute the geometric distance:

dist(R1,R2) = ∥Log(R⊤
1 R2)∥ =

∣∣∣∣arccos(tr(R⊤
1 R2)− 1

2

)∣∣∣∣ .
2.4 Plus and minus operators

Plus and minus operators allow us to introduce increments between elements of a (curved)
manifold, then express them in its (flat) Cartesian vector space by the capitalized maps. The
right (local) operators are defined as follows:

X ⊕ Xτ = X ◦ Exp(Xτ) = Y ∈M (2.13)

Y ⊖ X = Log(X−1 ◦ Y) = Xτ ∈ TXM (2.14)

Similarly, the left (global) operators are defined as

Eτ ⊕X = Exp(Eτ) ◦ X = Y ∈M

Y ⊖X = Log(Y ◦ X−1) = Eτ ∈ TEM
We use the right (local) operators if not specified. We next derive the relation between elements
in (local) tangent spaces and the (global) Lie algebra.

Figure 2.3: Relation between right and left operators [6].

2.5 Adjoint

Figure 2.3 shows the relation between right and left operators (clockwise cycle):

Exp(Eτ)X = XExp(Xτ)

=⇒ exp(Eτ∧)X = X exp(Xτ∧)

=⇒ exp(Eτ∧) = X exp(Xτ∧)X−1 = exp(XXτ∧X−1)

=⇒ Eτ∧ = XXτ∧X−1.

5

We next define the adjoint ofM at X as

AdX : TXM→ m ; Xτ∧ 7→ AdX (τ
∧) = Xτ∧X−1 = Eτ∧, (2.15)

and thus Eτ∧ = AdX (τ
∧). The adjoint is a linear transformation, and we have an equivalent

matrix operator on the Cartesian vector space, the adjoint matrix, defined as follows:

AdX : Rm → Rm ; Xτ 7→ AdX · Xτ = Eτ . (2.16)

For example, Table 2.1 shows the commutative relation of the adjoint on the rotation group.

Lie algebra Cartesian space

θ∧ = [θ]× ∈ so(3)
(·)∨−−→ θ ∈ R3

↓ AdX ↓ AdX

τ∧ ∈ TXSO(3)
(·)∧←−− τ ∈ R3

Table 2.1: Adjoint of the rotation group.

3 Lie derivatives

Since we have plus and minus operators to express vector increments τ , we define the right
(local) derivative, analogous to standard derivative in Euclidean space:

XDf(X)
DX

= lim
τ→0

f(X ⊕ τ)⊖ f(X)
τ

∈ Rn×m, (3.1)

where f : M→N is a function acting on manifolds, m and n are the DoF of M and N ,
respectively. Similarly, the left (global) derivative can be defined by

EDf(X)
DX

= lim
τ→0

f(τ ⊕X)⊖ f(X)
τ

∈ Rn×m.

Again, we use the right (local) Jacobian if not specified, and denote it as J
f(X)
X .

Example 3.1: Derivative of rotation action

Consider the rotation action f : SO(3) → R3 with f(R) = Rp, that is, a rotation R acts
on a 3D point p (or rotating p by R). The Lie derivative of this function is

Df(R)

DR
= lim

θ→0

(R⊕ θ)⊖Rp

θ

= lim
θ→0

RExp(θ)p−Rp

θ

= lim
θ→0

R(I+ [θ]×)p−Rp

θ

= lim
θ→0

R[θ]×p

θ
= lim

θ→0

−R[p]×θ

θ
= −R[p]× ∈ R3×3.

We next discuss about some differentiation rules on manifolds. Although we consider only
the right Jacobian, one can obtain the left Jacobian with the help of adjoint matrices:

EDf(X)
DX

= Adf(X)

XDf(X)
DX

Ad−1
X .

6

3.1 Differentiation rules

For Y = f(X) and Z = g(Y), we have Z = g ◦ f(X) and the chain rule:

JZ
X = JZ

YJ
Y
X . (3.2)

The Jacobian of inverse functions f(X) = X−1 is

JX−1

X = lim
τ→0

(X ⊕ τ)−1 ⊖X−1

τ

= lim
τ→0

Log(X (XExp(τ))−1)

τ

= lim
τ→0

Log(XExp(−τ)X−1)

τ

= lim
τ→0

(X (−τ)∧X−1)∨

τ
= −AdX . (3.3)

The Jacobian of group compositions are

JX◦Y
X = lim

τ→0

((X ⊕ τ) ◦ Y)⊖ (X ◦ Y)
τ

= lim
τ→0

Log((XY)−1XExp(τ)Y)
τ

= lim
τ→0

Log(Y−1Exp(τ)Y)
τ

= lim
τ→0

(Y−1τ∧Y)∨

τ
= Ad−1

Y , (3.4)

JX◦Y
Y = lim

τ→0

(X ◦ (Y ⊕ τ))⊖ (X ◦ Y)
τ

= lim
τ→0

Log((XY)−1XYExp(τ))
τ

= lim
τ→0

Log(Exp(τ))

τ
= I. (3.5)

In addition, we define the right Jacobian as the derivative of Exp(·), which maps a vector
τ ∈ Rm to a local tangent space.

Jr :=
DExp(τ)

Dτ
∈ Rm×m. (3.6)

Several useful closed-form Jacobian exist but might not generalize to all manifolds. Group
actions, capitalized exponential, logarithm maps of Lie groups such as SO(2), SO(3), SE(2),
and SE(3) all have closed-forms. Please refer to [6] for further details.

3.2 Pose graph optimization

Here we demonstrate an application of Lie theory to solve a real-world robotics problem.
Assuming the reader is already familiar with pose graph optimization (PGO), we focus primarily
on deriving the Jacobian. We employ Gauss-Newton method, a widely used non-linear least
squares solver that approximates the Hessian and Jacobian linearly. Since the variables in
2D PGO lies in SE(2), which is non-linear, we need some linear approximation. A common
approach [3] is to vectorize T ∈ SE(2) as follows:

vec(·) : SE(2)→ R3 ;

cos θ − sin θ x
sin θ cos θ y
0 0 1

 7→
x
y
θ

 .

7

With the help of this vectorization, we define the error (or residual) as follows:

e(Ti,Tj) = vec(T−1
ij T−1

i Tj)

= vec

(
R⊤

ijR
⊤
i Rj R⊤

ij(R
⊤
i (tj − ti)− tij)

0⊤ 1

)
=

(
R⊤

ij(R
⊤
i (tj − ti)− tij)

−θij − θ1 + θ2

)
. (3.7)

Then we can compute the partial derivative of the error (3.7) with respect to vec(Ti) by(
∂e(Ti,Tj)

ti

∂e(Ti,Tj)
θi

)
=

(
−R⊤

ijR
⊤
i Rij

∂R⊤
i

∂θi
(tj − ti)

0⊤ 1

)
, (3.8)

and the partial derivative of the error (3.7) with respect to vec(Tj) by(
∂e(Ti,Tj)

tj

∂e(Ti,Tj)
θj

)
=

(
R⊤

ijR
⊤
i 0

0⊤ 1

)
. (3.9)

Although vectorization aligns well with linear approximation methods, it does not inher-
ently capture the intrinsic geometry of the special Euclidean group. This is because naively
treating SE(2) elements as vectors in R3 by extracting the translation and rotation components
separately ignores the underlying structure of the manifold. Lie algebra, on the other hand, is
another approach of linearization, which directly exploits the structure of the Lie group and its
associated Lie algebra. This is essentially using the geodesic distance to measure the error, that
is, we now use the error (or residual)

e(Ti,Tj) = Log(T−1
ij T−1

i Tj). (3.10)

By chain rule (3.2), Equation (3.3), Equation (3.5), and the inverse of Equation (3.6), we
have the partial derivative of the error (3.10) with respect to Ti as follows:

J
Log(T−1

ij T−1
i Tj)

Ti
= J

Log(T−1
ij T−1

i Tj)

T−1
ij T−1

i Tj︸ ︷︷ ︸
J−1
r (eij)

· J
T−1

ij (T−1
i Tj)

(T−1
i Tj)︸ ︷︷ ︸

I

· J
T−1

i Tj

(T−1
j Ti)︸ ︷︷ ︸

−Ad
T−1
j

Ti

· J
T−1

j (Ti)

(Ti)︸ ︷︷ ︸
I

= −J−1
r (eij) ·AdT−1

j Ti
, (3.11)

and the partial derivative of the error (3.10) with respect to Tj as follows:

J
Log(T−1

ij T−1
i Tj)

Tj
= J

Log(T−1
ij T−1

i Tj)

T−1
ij T−1

i Tj
J
T−1

ij T−1
i Tj

Tj
= J−1

r (eij). (3.12)

To actually implement this, we use the closed-forms:

SE(2) =

{
M =

(
R t
0⊤ 1

)
∈ R3×3

∣∣∣∣R ∈ SO(2), t ∈ R2

}
, [6, Equation (152)]

se(2) =

{
τ∧ =

(
[θ]× ρ
0⊤ 0

)
∈ R3×3

∣∣∣∣τ =

(
ρ
θ

)
∈ R3

}
, [6, Equation (153)]

Exp(τ) =

(
R V(θ)ρ
0⊤ 1

)
; R =

(
cos θ − sin θ
sin θ cos θ

)
, [6, Equation (156)]

Log(T) =

(
V−1(θ)t

θ

)
; θ = arctan

(
R[1,0]

R[0,0]

)
, [6, Equation (157)]

V(θ) =
sin θ

θ
I3 +

1− cos θ

θ
[1]×,

8

AdT =

(
R −[1]×t
0⊤ 1

)
, [6, Equation (159)]

Jr(τ) =

 sin θ
θ

(1−cos θ)
θ

−ρ2+θρ1−ρ1 sin θ+ρ2 cos θ
θ2

cos θ
θ

sin θ
θ

ρ1+θρ2−ρ1 cos θ−ρ2 sin θ
θ2

0 0 1

 . [6, Equation (163)]

We point out that during our implementation, [6, Equation (156)], [6, Equation (157)] and
[6, Equation (163)] are numerically unstable if θ → 0. Thus, we employ Taylor approximation
when θ is sufficient small. Figure 3.1 illustrates utilizing Euclidean gradient and Lie derivative
to solve 2D pose graph optimization, respectively. Although the difference between the two
methods may appear subtle, the Lie derivative approach generally outperforms the Euclidean
gradient method in 3D cases. A complete implementation of the 2D pose graph optimization is
available at https://github.com/doggydoggy0101/blog/tree/main/pgo.

Initial graph Optimized by Euclidean gradient Optimized by Lie derivative

(a) Intel Research Lab.

Initial graph Optimized by Euclidean gradient Optimized by Lie derivative

(b) MIT Killian Court.

Figure 3.1: 2D pose graph optimization example.

References

[1] L. Carlone. 16.485: Visual navigation for autonomous vehicles (lecture notes), 2023.

[2] X. Gao, T. Zhang, Y. Liu, and Q. Yan. 14 lectures on visual slam: from theory to practice.
Publishing House of Electronics Industry, pages 206–234, 2017.

[3] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on graph-based slam.
IEEE Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.

[4] K. M. Lynch and F. C. Park. Modern robotics. Cambridge University Press, 2017.

[5] K. B. Petersen, M. S. Pedersen, et al. The matrix cookbook. Technical University of
Denmark, 7(15):510, 2008.

[6] J. Sola, J. Deray, and D. Atchuthan. A micro lie theory for state estimation in robotics.
arXiv:1812.01537, 2018.

9

https://github.com/doggydoggy0101/blog/tree/main/pgo

	Lie theory
	Lie groups

	Lie algebra
	Cartesian vector space
	Exponential map
	Logarithm map
	Plus and minus operators
	Adjoint

	Lie derivatives
	Differentiation rules
	Pose graph optimization

